

Interpretable and Low-Resource Entity Matching via Decoupling Feature Learning from Decision Making

Zijun Yao, Chengjiang Li, Tiansi Dong, Xin Lv, Jifan Yu Lei Hou, Juanzi Li, Yichi Zhang, Zelin Dai

> Tsinghua University University of Bonn Alibaba Group

Index

1. Background

- 2. Methodology
 - 2.1. Heterogeneous Information Fusion
 - 2.2. Key Attribute Tree
 - 2.3. Self-Supervised Training
- 3. Experiments
- 4. Conclusion & Future Work

	Title	Author	Venue	Conference (redundant)
<i>e</i> ₁	Data Mining Techniques	missing	SIGMOD Conference	International Conference on Management of Data
<i>e</i> ₂	Data Mining: Concepts and Techniques	J. Han, J. Pei, M. Kamber	SIGMOD Record	missing
<i>e</i> ₃	Data mining: Concepts & Techniques by Jiawei Han	misplaced	ACM SIGMOD Record	missing

	Title	Author	Venue	Conference (redundant)
<i>e</i> ₁	Data Mining Techniques	missing	SIGMOD Conference	International Conference on Management of Data
<i>e</i> ₂	Data Mining: Concepts and Techniques	J. Han, J. Pei, M. Kamber	SIGMOD Record	missing
<i>e</i> ₃	Data mining: Concepts & Techniques by Jiawei Han	misplaced	ACM SIGMOD Record	missing

	Title	Author	Venue	Conference (redundant)
<i>e</i> ₁	Data Mining Techniques	missing	SIGMOD Conference	International Conference on Management of Data
<i>e</i> ₂	Data Mining: Concepts and Techniques	J. Han, J. Pei, M. Kamber	SIGMOD Record	missing
<i>e</i> ₃	Data mining: Concepts & Techniques by Jiawei Han	misplaced	ACM SIGMOD Record	missing

	Title	Author	Venue	Conference (redundant)
<i>e</i> ₁	Data Mining Techniques	missing	SIGMOD Conference	International Conference on Management of Data
<i>e</i> ₂	Data Mining: Concepts and Techniques	J. Han, J. Pei, M. Kamber	SIGMOD Record	missing
<i>e</i> ₃	Data mining: Concepts & Techniques by Jiawei Han	misplaced	ACM SIGMOD Record	missing

	Title	Author	Venue	Conference (redundant)
<i>e</i> ₁	Data Mining Techniques	missing	SIGMOD Conference	International Conference on Management of Data
<i>e</i> ₂	Data Mining: Concepts and Techniques	J. Han, J. Pei, M. Kamber	SIGMOD Record	missing
<i>e</i> ₃	Data mining: Concepts & Techniques by Jiawei Han	misplaced	ACM SIGMOD Record	missing

Challenges

	Title	Author	Venue	Conference (redundant)
<i>e</i> ₁	Data Mining Techniques	missing	SIGMOD Conference	International Conference on Management of Data
<i>e</i> ₂	Data Mining: Concepts and Techniques	J. Han, J. Pei, M. Kamber	SIGMOD Record	missing
<i>e</i> ₃	Data mining: Concepts & Techniques by Jiawei Han	misplaced	ACM SIGMOD Record	missing

Challenges

	Title	Author	Venue	Conference (redundant)
<i>e</i> ₁	Data Mining Techniques	missing	SIGMOD Conference	International Conference on Management of Data
<i>e</i> ₂	Data Mining: Concepts and Techniques	J. Han, J. Pei, M. Kamber	SIGMOD Record	missing
<i>e</i> ₃	Data mining: Concepts & Techniques by Jiawei Han	misplaced	ACM SIGMOD Record	missing

Challenges

	Title	Author	Venue	Conference (redundant)
<i>e</i> ₁	Data Mining Techniques	missing	SIGMOD Conference	International Conference on Management of Data
<i>e</i> ₂	Data Mining: Concepts and Techniques	J. Han, J. Pei, M. Kamber	SIGMOD Record	missing
<i>e</i> ₃	Data mining: Concepts & Techniques by Jiawei Han	misplaced	ACM SIGMOD Record	missing

Motivations

- Representation Learning
 - Make use of unlabeled data
 - Understand heterogeneous attribute values
- Decision Making
 - Using interpretable classifier

Motivations

- Representation Learning
 - Make use of unlabeled data
 - Understand heterogeneous attribute values
- Decision Making
 - Using interpretable classifier

Index

- 1. Background
- 2. Methodology
 - 2.1. Heterogeneous Information Fusion
 - 2.2. Key Attribute Tree
 - 2.3. Self-Supervised Training
- 3. Experiments
- 4. Conclusion & Future Work

2. Methodology

2. Methodology

EMB – Word Embedding

• Segmentation and padding for each attribute value.

$$\underbrace{(\langle \mathsf{BEG} \rangle, w_1, w_2, \cdots \langle \mathsf{END} \rangle, \langle \mathsf{PAD} \rangle, \cdots, \langle \mathsf{PAD} \rangle)}_{\mathsf{length} = l}$$

- Static embedding as look up table operation.
 - Attribute value $e[\mathcal{A}_i] \Longrightarrow l$ embedding vectors.
 - $\text{EMB}(e)[\mathcal{A}_i] \in \mathbb{R}^{l \times d_2}$

• Attribute value $e[A_i] \Rightarrow l$ embedding vectors $\Rightarrow 1$ embedding vector

- Attribute value $e[A_i] \Rightarrow l$ embedding vectors $\Rightarrow 1$ embedding vector
- Aggregation weight is learned from attention
 - Attention vector for the i^{th} attributes: α_i

$$\alpha_i = \text{Softmax}(\text{EMB}(e)[\mathcal{A}_i] a_i)^\top \in \mathbb{R}^{1 \times l}$$

- Attribute value $e[A_i] \Rightarrow l$ embedding vectors $\Rightarrow 1$ embedding vector
- Aggregation weight is learned from attention
 - Attention vector for the i^{th} attributes: α_i

$$\alpha_i = \text{Softmax}(\text{EMB}(e)[\mathcal{A}_i]a_i)^\top \in \mathbb{R}^{1 \times l}$$

- Attribute value $e[A_i] \Rightarrow l$ embedding vectors $\Rightarrow 1$ embedding vector
- Aggregation weight is learned from attention
 - Attention vector for the i^{th} attributes: α_i

$$\alpha_i = \text{Softmax}(\text{EMB}(e)[\mathcal{A}_i] \ a_i)^\top \in \mathbb{R}^{1 \times l}$$

• Aggregation as weighted sum: $AGG(EMB(e)[\mathcal{A}_i]) \in \mathbb{R}^{d_a}$

 $\operatorname{AGG}(\operatorname{EMB}(e)[\mathcal{A}_i]) = \operatorname{ReLU}(\alpha_i \operatorname{EMB}(e)[\mathcal{A}_i] \mathbf{W}_{ai})$

PROP – Attribute Information Propagation

- Recover noisy attribute value by information propagation
 - Learn propagation weight with Scaled-Dot-Product

$$\begin{aligned} \mathbf{q}_{i} &= \mathrm{AGG}(\mathrm{EMB}(e)[\mathcal{A}_{i}]) \ \mathbf{Q} \\ \mathbf{k}_{j} &= \mathrm{AGG}(\mathrm{EMB}(e)[\mathcal{A}_{i}]) \ \mathbf{K} \\ \mathbf{v}_{i} &= \mathrm{AGG}(\mathrm{EMB}(e)[\mathcal{A}_{i}]) \ \mathbf{V}_{i} \\ \mathbf{A}_{ij} &= \mathrm{AGG}(\mathrm{EMB}(e)[\mathcal{A}_{i}]) \ \mathbf{V}_{i} \end{aligned}$$

PROP – Attribute Information Propagation

- Recover noisy attribute value by information propagation
 - Learn propagation weight with Scaled-Dot-Product

$$\begin{aligned} \mathbf{q}_{i} &= \mathrm{AGG}(\mathrm{EMB}(e)[\mathcal{A}_{i}]) \ \mathbf{Q} \\ \mathbf{k}_{j} &= \mathrm{AGG}(\mathrm{EMB}(e)[\mathcal{A}_{i}]) \ \mathbf{K} \\ \mathbf{v}_{i} &= \mathrm{AGG}(\mathrm{EMB}(e)[\mathcal{A}_{i}]) \ \mathbf{V}_{i} \\ \mathbf{A}_{ij} &= \mathrm{AGG}(\mathrm{EMB}(e)[\mathcal{A}_{i}]) \ \mathbf{V}_{i} \end{aligned}$$

PROP – Attribute Information Propagation

- Recover noisy attribute value by information propagation
 - Learn propagation weight with Scaled-Dot-Product
 - Keep identity information with Residual connection

$$\begin{aligned} \mathbf{q}_i &= \mathrm{AGG}(\mathrm{EMB}(e)[\mathcal{A}_i]) \ \mathbf{Q} \\ \mathbf{k}_j &= \mathrm{AGG}(\mathrm{EMB}(e)[\mathcal{A}_i]) \ \mathbf{K} \\ \mathbf{v}_i &= \mathrm{AGG}(\mathrm{EMB}(e)[\mathcal{A}_i]) \ \mathbf{V}_i \\ \mathbf{A}_{ij} &= \mathrm{Softmax} \left(\frac{\mathbf{q}_i \cdot \mathbf{k}_j}{\sqrt{m}} \right) \end{aligned}$$

$$PROP(AGG(e))[\mathcal{A}_i] = ReLU\left(\mathbf{v}_i \left\| \sum_{j \neq i} \mathbf{A}_{ij} \mathbf{v}_j \right.\right)$$

CFC – Comparison Feature Computation

- Embedded feature comparison
 - Cosine Similarity
 - L₂ Distance
 - Pearson Coefficient

CFC – Comparison Feature Computation

- Embedded feature comparison
 - Cosine Similarity
 - L₂ Distance
 - Pearson Coefficient

CFC – Comparison Feature Computation

- Embedded feature comparison
- Original attribute value comparison

Attribute Type	Comparison Metrics
boolean	Exact matching distance
number	Exact matching distance, Absolute distance, Levenshtein distance, Levenshtein similarity
string of length 1	Levenshtein distance, Levenshtein similarity, Jaro similarity, Jaro Winkler similarity, Exact matching distance, Jaccard similarity with QGram tokenizer,
string of length [2, 5]	Jaccard similarity with QGram tokenizer, Jaccard similarity with delimiter tokenizer, Levenshtein distance, Levenshtein similarity Cosine similarity with delimiter tokenizer, Monge Elkan similarity, Smith Waterman similarity,
string of length [6, 10]	Jaccard similarity with QGram tokenizer, Cosine similarity with delimiter tokenizer, Levenshtein distance, Levenshtein similarity, Monge Elkan similarity
string of length $[10,\infty]$	Jaccard similarity with QGram tokenizer, Cosine similarity with delimiter tokenizer

KAT Induction

- Key Attribute heuristic
 - Entity records can be determined to be a match with few key attributes
 - Some attributes are more important than others for EM
- Key Attribute Tree
 - Inducted with decision tree algorithm
 - Input: CFC features
 - Output: True for matching and False for non-matching

Mask Attribute Values

- Auxiliary MLP layers
- Training objective: Cross entropy
 - Auxiliary MLP output
 - Weighted Bag of Word vector

Mask Attribute Values

- Auxiliary MLP layers
- Training objective: Cross entropy
 - Auxiliary MLP output
 - Weighted Bag of Word vector

Index

- 1. Background
- 2. Methodology
 - 2.1. Heterogeneous Information Fusion
 - 2.2. Key Attribute Tree
 - 2.3. Self-Supervised Training

3. Experiments

4. Conclusion & Future Work

Datasets

- Structured: Attribute values are complete
- Dirty: Attribute values are noisy with missing and misplacement
- Real: Industrial dataset from Taobao

Туре	Dataset	#Attr.	#Rec.	#Pos.	#Neg.	Rate
	$I-A_1$	8	2,908	132	407	10%
Structured	$D-A_1$	4	4,739	2,220	10,143	1%
	$D-S_1$	4	13,270	5,347	23,360	1%
	I-A ₂	8	2,908	132	407	10%
Dirty	$D-A_2$	4	4,739	2,220	10,143	1%
	$D-S_2$	4	13,270	5,347	23,360	1%
	Phone	36	940	1,099	2,241	10%
Real	Skirt	20	9,708	6,371	18,202	1%
	Toner	13	7,065	4,551	13,481	1%

Methods	I-A ₁	D-A ₁	D-S ₁	I-A ₂	D-A ₂	$D-S_2$	Phone	Skirt	Toner	
DM-RNN	63.6	85.4	74.8	42.3	45.7	39.0	90.0	67.6	68.6	1
DM-ATT	55.8	82.5	79.0	46.5	45.2	57.8	80.3	54.4	48.8	
DM-HYB	60.9	86.6	78.0	49.5	46.2	60.4	91.9	64.2	67.4	
HierMatcher	61.9	37.5	68.2	37.8	32.6	45.8	86.2	61.7	55.2	
Magellan	92.3	93.7	85.1	50.6	65.6	71.1	93.6	96.6	97.2	
HIF+DT	96.0	96.4	87.5	54.9	80.1	74.2	94.9	96.7	97.2	
HIF+KAT _{ID3}	95.8	96.6	88.2	51.6	79.0	79.5	94.5	96.7	97.2	
HIF+KAT _{XGB}	90.6	93.3	87.9	41.5	80.3	79.5	94.4	96.2	97.2	
HIF+LN	77.9	21.0	54.7	41.6	-	78.5	72.2	62.8	86.0	
HIF+LR	84.2	87.1	84.6	46.5	-	68.1	87.5	41.7	62.0	
HIF-WBOW	93.0	92.7	75.4	43.2	47.9	43.7	91.6	66.3	74.0	
HIF-EMB	91.1	90.9	76.6	30.8	53.9	46.8	89.9	65.7	79.8	
HIF-ALONE	94.6	96.1	82.9	45.6	73.5	63.2	91.8	63.0	72.9	

Methods	I-A ₁	D-A ₁	$D-S_1$	I-A ₂	D-A ₂	$D-S_2$	Phone	Skirt	Toner
DM-RNN	63.6	85.4	74.8	42.3	45.7	39.0	90.0	67.6	68.6
DM-ATT	55.8	82.5	79.0	46.5	45.2	57.8	80.3	54.4	48.8
DM-HYB	60.9	86.6	78.0	49.5	46.2	60.4	91.9	64.2	67.4
HierMatcher	61.9	37.5	68.2	37.8	32.6	45.8	86.2	61.7	55.2
Magellan	92.3	93.7	85.1	50.6	65.6	71.1	93.6	96.6	97.2
HIF+DT	96.0	96.4	87.5	54.9	80.1	74.2	94.9	96.7	97.2
HIF+KAT _{ID3}	95.8	96.6	88.2	51.6	79.0	79.5	94.5	96.7	97.2
HIF+KAT _{ID3} HIF+KAT _{XGB}	95.8 90.6	96.6 93.3	88.2 87.9	51.6 41.5	79.0 80.3	79.5 79.5	94.5 94.4	96.7 96.2	97.2 97.2
HIF+KAT _{ID3} HIF+KAT _{XGB} HIF+LN	95.8 90.6 77.9	96.6 93.3 21.0	88.2 87.9 54.7	51.6 41.5 41.6	79.0 80.3	79.5 79.5 78.5	94.5 94.4 72.2	96.7 96.2 62.8	97.2 97.2 86.0
HIF+KAT _{ID3} HIF+KAT _{XGB} HIF+LN HIF+LR	95.8 90.6 77.9 84.2	96.6 93.3 21.0 87.1	88.2 87.9 54.7 84.6	51.6 41.5 41.6 46.5	79.0 80.3 -	79.5 79.5 78.5 68.1	94.5 94.4 72.2 87.5	96.7 96.2 62.8 41.7	97.2 97.2 86.0 62.0
HIF+KAT _{ID3} HIF+KAT _{XGB} HIF+LN HIF+LR HIF+LR	95.8 90.6 77.9 84.2 93.0	96.6 93.3 21.0 87.1 92.7	88.2 87.9 54.7 84.6 75.4	51.6 41.5 41.6 46.5 43.2	79.0 80.3 - 47.9	79.5 79.5 78.5 68.1 43.7	94.5 94.4 72.2 87.5 91.6	96.7 96.2 62.8 41.7 66.3	97.2 97.2 86.0 62.0 74.0
HIF+KAT _{ID3} HIF+KAT _{XGB} HIF+LN HIF+LR HIF+LR HIF-WBOW HIF-EMB	95.8 90.6 77.9 84.2 93.0 91.1	96.6 93.3 21.0 87.1 92.7 90.9	88.2 87.9 54.7 84.6 75.4 76.6	51.6 41.5 41.6 46.5 43.2 30.8	79.0 80.3 - 47.9 53.9	79.5 79.5 78.5 68.1 43.7 46.8	94.5 94.4 72.2 87.5 91.6 89.9	96.7 96.2 62.8 41.7 66.3 65.7	97.2 97.2 86.0 62.0 74.0 79.8

Methods	I-A ₁	D-A ₁	$D-S_1$	I-A ₂	D-A ₂	$D-S_2$	Phone	Skirt	Toner
DM-RNN	63.6	85.4	74.8	42.3	45.7	39.0	90.0	67.6	68.6
DM-ATT	55.8	82.5	79.0	46.5	45.2	57.8	80.3	54.4	48.8
DM-HYB	60.9	86.6	78.0	49.5	46.2	60.4	91.9	64.2	67.4
HierMatcher	61.9	37.5	68.2	37.8	32.6	45.8	86.2	61.7	55.2
Magellan	92.3	93.7	85.1	50.6	65.6	71.1	93.6	96.6	97.2
HIF+DT	96.0	96.4	87.5	54.9	80.1	74.2	94.9	96.7	97.2
HIF+KAT _{ID3}	95.8	96.6	88.2	51.6	79.0	79.5	94.5	96.7	97.2
HIF+KAT _{XGB}	90.6	93.3	87.9	41.5	80.3	79.5	94.4	96.2	97.2
HIF+LN	77.9	21.0	54.7	41.6	-	78.5	72.2	62.8	86.0
HIF+LR	84.2	87.1	84.6	46.5	-	68.1	87.5	41.7	62.0
HIF-WBOW	93.0	92.7	75.4	43.2	47.9	43.7	91.6	66.3	74.0
HIF-EMB	91.1	90.9	76.6	30.8	53.9	46.8	89.9	65.7	79.8
HIF-ALONE	94.6	96.1	82.9	45.6	73.5	63.2	91.8	63.0	72.9

Methods	I-A ₁	D-A ₁	$D-S_1$	I-A ₂	D-A ₂	$D-S_2$	Phone	Skirt	Toner
DM-RNN	63.6	85.4	74.8	42.3	45.7	39.0	90.0	67.6	68.6
DM-ATT	55.8	82.5	79.0	46.5	45.2	57.8	80.3	54.4	48.8
DM-HYB	60.9	86.6	78.0	49.5	46.2	60.4	91.9	64.2	67.4
HierMatcher	61.9	37.5	68.2	37.8	32.6	45.8	86.2	61.7	55.2
Magellan	92.3	93.7	85.1	50.6	65.6	71.1	93.6	96.6	97.2
HIF+DT	96.0	96.4	87.5	54.9	80.1	74.2	94.9	96.7	97.2
HIF+KATID3	95 8	96.6	88 2	516	79.0	79.5	94 5	96 7	97 2
I III I IIIII	15.0	20.0	00.2	51.0	12.0	17.0	74.5	20.1	1.4
HIF+KAT _{XGB}	90.6	93.3	87.9	41.5	80.3	79.5	94.4	96.2	97.2 97.2
HIF+KAT _{XGB}	90.6 77.9	93.3 21.0	87.9 54.7	41.5	80.3	79.5 78.5	94.4 72.2	96.2 62.8	97.2 97.2 86.0
HIF+KAT _{XGB} HIF+LN HIF+LR	90.6 77.9 84.2	93.3 21.0 87.1	87.9 54.7 84.6	41.5 41.6 46.5	80.3	79.5 78.5 68.1	94.4 72.2 87.5	96.2 62.8 41.7	97.2 97.2 86.0 62.0
HIF+KAT _{XGB} HIF+LN HIF+LR HIF-WBOW	90.6 77.9 84.2 93.0	93.3 21.0 87.1 92.7	87.9 54.7 84.6 75.4	41.5 41.6 46.5 43.2	80.3 - - 47.9	79.5 78.5 68.1 43.7	94.4 72.2 87.5 91.6	96.2 62.8 41.7 66.3	97.2 97.2 86.0 62.0 74.0
HIF+KAT _{XGB} HIF+LN HIF+LR HIF-WBOW HIF-EMB	90.6 77.9 84.2 93.0 91.1	93.3 21.0 87.1 92.7 90.9	87.9 54.7 84.6 75.4 76.6	41.5 41.6 46.5 43.2 30.8	80.3 - - 47.9 53.9	79.5 78.5 68.1 43.7 46.8	94.4 72.2 87.5 91.6 89.9	96.2 62.8 41.7 66.3 65.7	97.2 97.2 86.0 62.0 74.0 79.8

Methods	I-A ₁	D-A ₁	D-S ₁	I-A ₂	D-A ₂	$D-S_2$	Phone	Skirt	Toner
DM-RNN	63.6	85.4	74.8	42.3	45.7	39.0	90.0	67.6	68.6
DM-ATT	55.8	82.5	79.0	46.5	45.2	57.8	80.3	54.4	48.8
DM-HYB	60.9	86.6	78.0	49.5	46.2	60.4	91.9	64.2	67.4
HierMatcher	61.9	37.5	68.2	37.8	32.6	45.8	86.2	61.7	55.2
Magellan	92.3	93.7	85.1	50.6	65.6	71.1	93.6	96.6	97.2
HIF+DT	96.0	96.4	87.5	54.9	80.1	74.2	94.9	96.7	97.2
HIF+KAT _{ID3}	95.8	96.6	88.2	51.6	79.0	79.5	94.5	96.7	97.2
HIF+KAT _{XGB}	90.6	93.3	87.9	41.5	80.3	79.5	94.4	96.2	97.2
HIF+LN	77.9	21.0	54.7	41.6	-	78.5	72.2	62.8	86.0
HIF+LR	84.2	87.1	84.6	46.5	-	68.1	87.5	41.7	62.0
HIF-WBOW	93.0	92.7	75.4	43.2	47.9	43.7	91.6	66.3	74.0
HIF-EMB	91.1	90.9	76.6	30.8	53.9	46.8	89.9	65.7	79.8
HIF-ALONE	94.6	96.1	82.9	45.6	73.5	63.2	91.8	63.0	72.9

Sensitivity Test

- Control variables:
 - Training set size
 - Missing rate

Case Study & Interpretability

Case Study & Interpretability

 $\begin{array}{l} \mbox{Rule 1: if } L_2 \left(\mbox{HIF}(e_1), \mbox{HIF}(e_2) \right) [\mbox{Authors}] \geq 10.21 \\ \mbox{then } e_1, e_2 \mbox{ are not a match;} \\ \mbox{Rule 2: if } L_2 \left(\mbox{HIF}(e_1), \mbox{HIF}(e_2) \right) [\mbox{Authors}] < 10.21 \\ \mbox{ } \Lambda L_2 \left(\mbox{HIF}(e_1), \mbox{HIF}(e_2) \right) [\mbox{Title}] < 0.73 \\ \mbox{then } e_1, e_2 \mbox{ are a match;} \\ \mbox{Rule 3: if } L_2 \left(\mbox{HIF}(e_1), \mbox{HIF}(e_2) \right) [\mbox{Authors}] < 10.21 \\ \mbox{ } \Lambda L_2 \left(\mbox{HIF}(e_1), \mbox{HIF}(e_2) \right) [\mbox{Authors}] < 10.21 \\ \mbox{ } \Lambda L_2 \left(\mbox{HIF}(e_1), \mbox{HIF}(e_2) \right) [\mbox{Title}] \geq 0.73 \\ \mbox{then } e_1, e_2 \mbox{ are not a match} \end{array}$

Case Study & Interpretability

Rule 1: if two records have different authors, they will be different publications.

Rule 2: if two records have similar authors and similar titles, they will be the same publication. Rule 3: if two records have similar authors and dissimilar titles, they will not be the same publication. The soundness of such rules can be examined by our experience.

Index

- 1. Background
- 2. Methodology
 - 2.1. Heterogeneous Information Fusion
 - 2.2. Key Attribute Tree
 - 2.3. Self-Supervised Training
- 3. Experiments
- 4. Conclusion & Future Work

Conclusion and Future Work

- Conclusion
 - The decoupled framework provides a paradigm for utilizing unlabeled data and providing interpretable EM process.
- Future Work
 - Leveraging extra entity records
 - Incorporating pre-trained language models
 - Incorporating HIF with other EM models

Interpretable and Low-Resource Entity Matching via Decoupling Feature Learning from Decision Making

Thanks!

- We thank the reviewers, organizers and audiences.
- Codes & Datasets: https://github.com/THU-KEG/HIF-KAT
- Contact: yaozj20@mails.tsinghua.edu.cn