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Abstract

Entity Matching (EM) aims at recognizing en-
tity records that denote the same real-world ob-
ject. Neural EM models learn vector represen-
tation of entity descriptions and match entities
end-to-end. Though robust, these methods re-
quire many annotated resources for training,
and lack of interpretability. In this paper, we
propose a novel EM framework that consists of
Heterogeneous Information Fusion (HIF) and
Key Attribute Tree (KAT) Induction to decou-
ple feature representation from matching deci-
sion. Using self-supervised learning and mask
mechanism in pre-trained language modeling,
HIF learns the embeddings of noisy attribute
values by inter-attribute attention with unla-
beled data. Using a set of comparison fea-
tures and a limited amount of annotated data,
KAT Induction learns an efficient decision tree
that can be interpreted by generating entity
matching rules whose structure is advocated
by domain experts. Experiments on 6 pub-
lic datasets and 3 industrial datasets show that
our method is highly efficient and outperforms
SOTA EM models in most cases. We will re-
lease the code upon acceptance.

1 Introduction

Entity Matching (EM) aims at identifying whether
two records from different sources refer to the same
real-world entity. This is a fundamental research
task in knowledge graph integration (Dong et al.,
2014; Daniel et al., 2020; Christophides et al., 2015;
Christen, 2012) and text mining (Zhao et al., 2014).
In real applications, it is not easy to decide whether
two records with ad hoc linguistic descriptions refer
to the same entity. In Figure 1, e2 and e3 refer to
the same publication, while e1 refers to a different
one. Venues of e2 and e3 have different expressions;
Authors of e3 is misplaced in its Title field.

Early works include feature engineering (Wang
et al., 2011) and rule matching (Singh et al., 2017;

Title Author Venue Conference (redundant)
!! Data Mining Techniques missing SIGMOD 

Conference
International Conference 
on Management of Data

!" Data Mining: Concepts 
and Techniques

J. Han, J. Pei, 
M. Kamber

SIGMOD 
Record

missing

!# Data mining: Concepts & 
Techniques by Jiawei Han

misplaced ACM SIGMOD 
Record

missing

Figure 1: Published papers as entity records.

Fan et al., 2009). Recently, the robustness of En-
tity Matching has been improved by deep learning
models, such as distributed representation based
models (Ebraheem et al., 2018), attention based
models (Mudgal et al., 2018; Fu et al., 2019, 2020),
and pre-trained language model based models (Li
et al., 2020). Nevertheless, these modern neural
EM models suffer from two limitations as follows.
Low-Resource Training. Supervised deep learn-
ing EM relies on large amounts of labeled train-
ing data, which is extremely costly in reality. At-
tempts have been made to leverage external data
via transfer learning (Zhao and He, 2019; Thirumu-
ruganathan et al., 2018; Kasai et al., 2019; Loster
et al., 2021) and pre-trained language model based
methods (Li et al., 2020). Other attempts have
also been made to improve labeling efficiency via
active learning (Nafa et al., 2020) and crowdsourc-
ing techniques (Gokhale et al., 2014; Wang et al.,
2012). However, external information may intro-
duce noises, and active learning and crowdsourcing
still require additional labeling work.
Lack of Interpretability. It is important to know
why two entity records are equivalent (Chen et al.,
2020), however, deep learning EM lacks inter-
pretability. Though some neural EM models an-
alyze the model behavior from the perspective of
attention (Nie et al., 2019), attention is not a safe
indicator for interpretability (Serrano and Smith,
2019). Deep learning EM also fails to generate
interpretable EM rules in the sense that they meet
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Fan et al., 2009). Recently, the robustness of En-
tity Matching has been improved by deep learning
models, such as distributed representation based
models (Ebraheem et al., 2018), attention based
models (Mudgal et al., 2018; Fu et al., 2019, 2020),
and pre-trained language model based models (Li
et al., 2020). Nevertheless, these modern neural
EM models suffer from two limitations as follows.
Low-Resource Training. Supervised deep learn-
ing EM relies on large amounts of labeled train-
ing data, which is extremely costly in reality. At-
tempts have been made to leverage external data
via transfer learning (Zhao and He, 2019; Thirumu-
ruganathan et al., 2018; Kasai et al., 2019; Loster
et al., 2021) and pre-trained language model based
methods (Li et al., 2020). Other attempts have
also been made to improve labeling efficiency via
active learning (Nafa et al., 2020) and crowdsourc-
ing techniques (Gokhale et al., 2014; Wang et al.,
2012). However, external information may intro-
duce noises, and active learning and crowdsourcing
still require additional labeling work.
Lack of Interpretability. It is important to know
why two entity records are equivalent (Chen et al.,
2020), however, deep learning EM lacks inter-
pretability. Though some neural EM models an-
alyze the model behavior from the perspective of
attention (Nie et al., 2019), attention is not a safe
indicator for interpretability (Serrano and Smith,
2019). Deep learning EM also fails to generate
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Fan et al., 2009). Recently, the robustness of En-
tity Matching has been improved by deep learning
models, such as distributed representation based
models (Ebraheem et al., 2018), attention based
models (Mudgal et al., 2018; Fu et al., 2019, 2020),
and pre-trained language model based models (Li
et al., 2020). Nevertheless, these modern neural
EM models suffer from two limitations as follows.
Low-Resource Training. Supervised deep learn-
ing EM relies on large amounts of labeled train-
ing data, which is extremely costly in reality. At-
tempts have been made to leverage external data
via transfer learning (Zhao and He, 2019; Thirumu-
ruganathan et al., 2018; Kasai et al., 2019; Loster
et al., 2021) and pre-trained language model based
methods (Li et al., 2020). Other attempts have
also been made to improve labeling efficiency via
active learning (Nafa et al., 2020) and crowdsourc-
ing techniques (Gokhale et al., 2014; Wang et al.,
2012). However, external information may intro-
duce noises, and active learning and crowdsourcing
still require additional labeling work.
Lack of Interpretability. It is important to know
why two entity records are equivalent (Chen et al.,
2020), however, deep learning EM lacks inter-
pretability. Though some neural EM models an-
alyze the model behavior from the perspective of
attention (Nie et al., 2019), attention is not a safe
indicator for interpretability (Serrano and Smith,
2019). Deep learning EM also fails to generate
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Fan et al., 2009). Recently, the robustness of En-
tity Matching has been improved by deep learning
models, such as distributed representation based
models (Ebraheem et al., 2018), attention based
models (Mudgal et al., 2018; Fu et al., 2019, 2020),
and pre-trained language model based models (Li
et al., 2020). Nevertheless, these modern neural
EM models suffer from two limitations as follows.
Low-Resource Training. Supervised deep learn-
ing EM relies on large amounts of labeled train-
ing data, which is extremely costly in reality. At-
tempts have been made to leverage external data
via transfer learning (Zhao and He, 2019; Thirumu-
ruganathan et al., 2018; Kasai et al., 2019; Loster
et al., 2021) and pre-trained language model based
methods (Li et al., 2020). Other attempts have
also been made to improve labeling efficiency via
active learning (Nafa et al., 2020) and crowdsourc-
ing techniques (Gokhale et al., 2014; Wang et al.,
2012). However, external information may intro-
duce noises, and active learning and crowdsourcing
still require additional labeling work.
Lack of Interpretability. It is important to know
why two entity records are equivalent (Chen et al.,
2020), however, deep learning EM lacks inter-
pretability. Though some neural EM models an-
alyze the model behavior from the perspective of
attention (Nie et al., 2019), attention is not a safe
indicator for interpretability (Serrano and Smith,
2019). Deep learning EM also fails to generate
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Fan et al., 2009). Recently, the robustness of En-
tity Matching has been improved by deep learning
models, such as distributed representation based
models (Ebraheem et al., 2018), attention based
models (Mudgal et al., 2018; Fu et al., 2019, 2020),
and pre-trained language model based models (Li
et al., 2020). Nevertheless, these modern neural
EM models suffer from two limitations as follows.
Low-Resource Training. Supervised deep learn-
ing EM relies on large amounts of labeled train-
ing data, which is extremely costly in reality. At-
tempts have been made to leverage external data
via transfer learning (Zhao and He, 2019; Thirumu-
ruganathan et al., 2018; Kasai et al., 2019; Loster
et al., 2021) and pre-trained language model based
methods (Li et al., 2020). Other attempts have
also been made to improve labeling efficiency via
active learning (Nafa et al., 2020) and crowdsourc-
ing techniques (Gokhale et al., 2014; Wang et al.,
2012). However, external information may intro-
duce noises, and active learning and crowdsourcing
still require additional labeling work.
Lack of Interpretability. It is important to know
why two entity records are equivalent (Chen et al.,
2020), however, deep learning EM lacks inter-
pretability. Though some neural EM models an-
alyze the model behavior from the perspective of
attention (Nie et al., 2019), attention is not a safe
indicator for interpretability (Serrano and Smith,
2019). Deep learning EM also fails to generate
interpretable EM rules in the sense that they meet
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Abstract

Entity Matching (EM) aims at recognizing en-
tity records that denote the same real-world ob-
ject. Neural EM models learn vector represen-
tation of entity descriptions and match entities
end-to-end. Though robust, these methods re-
quire many annotated resources for training,
and lack of interpretability. In this paper, we
propose a novel EM framework that consists of
Heterogeneous Information Fusion (HIF) and
Key Attribute Tree (KAT) Induction to decou-
ple feature representation from matching deci-
sion. Using self-supervised learning and mask
mechanism in pre-trained language modeling,
HIF learns the embeddings of noisy attribute
values by inter-attribute attention with unla-
beled data. Using a set of comparison fea-
tures and a limited amount of annotated data,
KAT Induction learns an efficient decision tree
that can be interpreted by generating entity
matching rules whose structure is advocated
by domain experts. Experiments on 6 pub-
lic datasets and 3 industrial datasets show that
our method is highly efficient and outperforms
SOTA EM models in most cases. We will re-
lease the code upon acceptance.

1 Introduction

Entity Matching (EM) aims at identifying whether
two records from different sources refer to the same
real-world entity. This is a fundamental research
task in knowledge graph integration (Dong et al.,
2014; Daniel et al., 2020; Christophides et al., 2015;
Christen, 2012) and text mining (Zhao et al., 2014).
In real applications, it is not easy to decide whether
two records with ad hoc linguistic descriptions refer
to the same entity. In Figure 1, e2 and e3 refer to
the same publication, while e1 refers to a different
one. Venues of e2 and e3 have different expressions;
Authors of e3 is misplaced in its Title field.

Early works include feature engineering (Wang
et al., 2011) and rule matching (Singh et al., 2017;
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models (Ebraheem et al., 2018), attention based
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and pre-trained language model based models (Li
et al., 2020). Nevertheless, these modern neural
EM models suffer from two limitations as follows.
Low-Resource Training. Supervised deep learn-
ing EM relies on large amounts of labeled train-
ing data, which is extremely costly in reality. At-
tempts have been made to leverage external data
via transfer learning (Zhao and He, 2019; Thirumu-
ruganathan et al., 2018; Kasai et al., 2019; Loster
et al., 2021) and pre-trained language model based
methods (Li et al., 2020). Other attempts have
also been made to improve labeling efficiency via
active learning (Nafa et al., 2020) and crowdsourc-
ing techniques (Gokhale et al., 2014; Wang et al.,
2012). However, external information may intro-
duce noises, and active learning and crowdsourcing
still require additional labeling work.
Lack of Interpretability. It is important to know
why two entity records are equivalent (Chen et al.,
2020), however, deep learning EM lacks inter-
pretability. Though some neural EM models an-
alyze the model behavior from the perspective of
attention (Nie et al., 2019), attention is not a safe
indicator for interpretability (Serrano and Smith,
2019). Deep learning EM also fails to generate
interpretable EM rules in the sense that they meet
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Fan et al., 2009). Recently, the robustness of En-
tity Matching has been improved by deep learning
models, such as distributed representation based
models (Ebraheem et al., 2018), attention based
models (Mudgal et al., 2018; Fu et al., 2019, 2020),
and pre-trained language model based models (Li
et al., 2020). Nevertheless, these modern neural
EM models suffer from two limitations as follows.
Low-Resource Training. Supervised deep learn-
ing EM relies on large amounts of labeled train-
ing data, which is extremely costly in reality. At-
tempts have been made to leverage external data
via transfer learning (Zhao and He, 2019; Thirumu-
ruganathan et al., 2018; Kasai et al., 2019; Loster
et al., 2021) and pre-trained language model based
methods (Li et al., 2020). Other attempts have
also been made to improve labeling efficiency via
active learning (Nafa et al., 2020) and crowdsourc-
ing techniques (Gokhale et al., 2014; Wang et al.,
2012). However, external information may intro-
duce noises, and active learning and crowdsourcing
still require additional labeling work.
Lack of Interpretability. It is important to know
why two entity records are equivalent (Chen et al.,
2020), however, deep learning EM lacks inter-
pretability. Though some neural EM models an-
alyze the model behavior from the perspective of
attention (Nie et al., 2019), attention is not a safe
indicator for interpretability (Serrano and Smith,
2019). Deep learning EM also fails to generate
interpretable EM rules in the sense that they meet
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Figure 2: The decoupled EM model comprising the heterogeneous information fusion module and the matching
decision making module. We use circles and rectangles to denote words and vectors, respectively. Cyan lines
with arrow indicate word information aggregation via intra-attribute attention. Red lines with arrow show attribute
information propagation. In the comparison features vector, blue squares are similarity scores by comparing on
HIF(e1)[Ai],HIF(e2)[Ai] and yellow squares are similarity scores by comparing on e1[Ai], e2[Ai] directly. EMB,
AGG, PROP, CFC, and KAT-Induction are calculation components specified in Section 3.

3.1 HIF for Entity Attribute Embedding
HIF : T ! Rm⇥d is a function that maps entity
records into vector representations. An attribute
value e[Ai] of a record e is mapped to a d dimen-
sional vector, written as HIF(e)[Ai] 2 Rd. HIF
treats attribute values as strings of words and per-
forms word embedding (EMB), word information
aggregation (AGG), and attribute information prop-
agation (PROP) successively.

Word Embedding (EMB). Word embedding is
a pre-train language model that contains features
learned from a large corpus. We convert numerical
and encoded attribute values into strings of digits
or alphabets. For Chinese attribute values, we do
word-segmentation using pkuseg (Luo et al., 2019).
Then, we mark the beginning and the end of an
attribute value with two special tokens, namely
hBEGi and hENDi. Finally, we pad each attribute
value with hPADi so that they are represented in
the same length l. The representation after padding
is illustrated as below:

(hBEGi, w1, w2, · · · hENDi, hPADi, · · · , hPADi)| {z }
lenght = l

Let W be the set of words, each word w 2 W
is mapped into a vector, and each attribute value is
mapped into a matrix. Formally, EMB : WN !

RN⇥de maps N words into an N ⇥ de matrix by
executing a look-up-table operation. N is the dic-
tionary size. In particular, we have EMB(e)[Ai] 2
Rl⇥de , in which de is the dimension of word em-
bedding vectors. It is worth noting that hPADi
is embedded to zero vector to ensure that it does
not interfere with other non-padding words in the
following step.

Word Information Aggregation (AGG). Sum-
ming up the l word embeddings as the embedding
of an attribute value will neglect the importance
weight among the l words. We leverage a more
flexible framework, which aggregates word infor-
mation by weighted pooling. The weighting co-
efficients ↵i for different words are extracted by
multiplying its embedding vector with a learnable,
and attribute-specific vector ai 2 Rde⇥1. Subscript
i implies that ↵i and ai are associated with the
ith attribute Ai. The weighting coefficients are
normalized by Softmax function among words. Fi-
nally, we enable a non-linear transformation (e.g.,
ReLU) during information aggregation with param-
eters Wai 2 Rde⇥da . Formally, AGG maps each
attribute value of entity record e into a da dimen-
sional vector AGG(EMB(e)[Ai]) 2 Rda as below:

AGG(EMB(e)[Ai]) = ReLU (↵i EMB(e)[Ai]Wai)

↵i = Softmax(EMB(e)[Ai] ai)
> 2 R1⇥l
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Figure 2: The decoupled EM model comprising the heterogeneous information fusion module and the matching
decision making module. We use circles and rectangles to denote words and vectors, respectively. Cyan lines
with arrow indicate word information aggregation via intra-attribute attention. Red lines with arrow show attribute
information propagation. In the comparison features vector, blue squares are similarity scores by comparing on
HIF(e1)[Ai],HIF(e2)[Ai] and yellow squares are similarity scores by comparing on e1[Ai], e2[Ai] directly. EMB,
AGG, PROP, CFC, and KAT-Induction are calculation components specified in Section 3.

3.1 HIF for Entity Attribute Embedding
HIF : T ! Rm⇥d is a function that maps entity
records into vector representations. An attribute
value e[Ai] of a record e is mapped to a d dimen-
sional vector, written as HIF(e)[Ai] 2 Rd. HIF
treats attribute values as strings of words and per-
forms word embedding (EMB), word information
aggregation (AGG), and attribute information prop-
agation (PROP) successively.

Word Embedding (EMB). Word embedding is
a pre-train language model that contains features
learned from a large corpus. We convert numerical
and encoded attribute values into strings of digits
or alphabets. For Chinese attribute values, we do
word-segmentation using pkuseg (Luo et al., 2019).
Then, we mark the beginning and the end of an
attribute value with two special tokens, namely
hBEGi and hENDi. Finally, we pad each attribute
value with hPADi so that they are represented in
the same length l. The representation after padding
is illustrated as below:

(hBEGi, w1, w2, · · · hENDi, hPADi, · · · , hPADi)| {z }
lenght = l

Let W be the set of words, each word w 2 W
is mapped into a vector, and each attribute value is
mapped into a matrix. Formally, EMB : WN !

RN⇥de maps N words into an N ⇥ de matrix by
executing a look-up-table operation. N is the dic-
tionary size. In particular, we have EMB(e)[Ai] 2
Rl⇥de , in which de is the dimension of word em-
bedding vectors. It is worth noting that hPADi
is embedded to zero vector to ensure that it does
not interfere with other non-padding words in the
following step.

Word Information Aggregation (AGG). Sum-
ming up the l word embeddings as the embedding
of an attribute value will neglect the importance
weight among the l words. We leverage a more
flexible framework, which aggregates word infor-
mation by weighted pooling. The weighting co-
efficients ↵i for different words are extracted by
multiplying its embedding vector with a learnable,
and attribute-specific vector ai 2 Rde⇥1. Subscript
i implies that ↵i and ai are associated with the
ith attribute Ai. The weighting coefficients are
normalized by Softmax function among words. Fi-
nally, we enable a non-linear transformation (e.g.,
ReLU) during information aggregation with param-
eters Wai 2 Rde⇥da . Formally, AGG maps each
attribute value of entity record e into a da dimen-
sional vector AGG(EMB(e)[Ai]) 2 Rda as below:

AGG(EMB(e)[Ai]) = ReLU (↵i EMB(e)[Ai]Wai)

↵i = Softmax(EMB(e)[Ai] ai)
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Figure 2: The decoupled EM model comprising the heterogeneous information fusion module and the matching
decision making module. We use circles and rectangles to denote words and vectors, respectively. Cyan lines
with arrow indicate word information aggregation via intra-attribute attention. Red lines with arrow show attribute
information propagation. In the comparison features vector, blue squares are similarity scores by comparing on
HIF(e1)[Ai],HIF(e2)[Ai] and yellow squares are similarity scores by comparing on e1[Ai], e2[Ai] directly. EMB,
AGG, PROP, CFC, and KAT-Induction are calculation components specified in Section 3.

3.1 HIF for Entity Attribute Embedding
HIF : T ! Rm⇥d is a function that maps entity
records into vector representations. An attribute
value e[Ai] of a record e is mapped to a d dimen-
sional vector, written as HIF(e)[Ai] 2 Rd. HIF
treats attribute values as strings of words and per-
forms word embedding (EMB), word information
aggregation (AGG), and attribute information prop-
agation (PROP) successively.

Word Embedding (EMB). Word embedding is
a pre-train language model that contains features
learned from a large corpus. We convert numerical
and encoded attribute values into strings of digits
or alphabets. For Chinese attribute values, we do
word-segmentation using pkuseg (Luo et al., 2019).
Then, we mark the beginning and the end of an
attribute value with two special tokens, namely
hBEGi and hENDi. Finally, we pad each attribute
value with hPADi so that they are represented in
the same length l. The representation after padding
is illustrated as below:

(hBEGi, w1, w2, · · · hENDi, hPADi, · · · , hPADi)| {z }
lenght = l

Let W be the set of words, each word w 2 W
is mapped into a vector, and each attribute value is
mapped into a matrix. Formally, EMB : WN !

RN⇥de maps N words into an N ⇥ de matrix by
executing a look-up-table operation. N is the dic-
tionary size. In particular, we have EMB(e)[Ai] 2
Rl⇥de , in which de is the dimension of word em-
bedding vectors. It is worth noting that hPADi
is embedded to zero vector to ensure that it does
not interfere with other non-padding words in the
following step.

Word Information Aggregation (AGG). Sum-
ming up the l word embeddings as the embedding
of an attribute value will neglect the importance
weight among the l words. We leverage a more
flexible framework, which aggregates word infor-
mation by weighted pooling. The weighting co-
efficients ↵i for different words are extracted by
multiplying its embedding vector with a learnable,
and attribute-specific vector ai 2 Rde⇥1. Subscript
i implies that ↵i and ai are associated with the
ith attribute Ai. The weighting coefficients are
normalized by Softmax function among words. Fi-
nally, we enable a non-linear transformation (e.g.,
ReLU) during information aggregation with param-
eters Wai 2 Rde⇥da . Formally, AGG maps each
attribute value of entity record e into a da dimen-
sional vector AGG(EMB(e)[Ai]) 2 Rda as below:

AGG(EMB(e)[Ai]) = ReLU (↵i EMB(e)[Ai]Wai)

↵i = Softmax(EMB(e)[Ai] ai)
> 2 R1⇥l
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Figure 2: The decoupled EM model comprising the heterogeneous information fusion module and the matching
decision making module. We use circles and rectangles to denote words and vectors, respectively. Cyan lines
with arrow indicate word information aggregation via intra-attribute attention. Red lines with arrow show attribute
information propagation. In the comparison features vector, blue squares are similarity scores by comparing on
HIF(e1)[Ai],HIF(e2)[Ai] and yellow squares are similarity scores by comparing on e1[Ai], e2[Ai] directly. EMB,
AGG, PROP, CFC, and KAT-Induction are calculation components specified in Section 3.

3.1 HIF for Entity Attribute Embedding
HIF : T ! Rm⇥d is a function that maps entity
records into vector representations. An attribute
value e[Ai] of a record e is mapped to a d dimen-
sional vector, written as HIF(e)[Ai] 2 Rd. HIF
treats attribute values as strings of words and per-
forms word embedding (EMB), word information
aggregation (AGG), and attribute information prop-
agation (PROP) successively.

Word Embedding (EMB). Word embedding is
a pre-train language model that contains features
learned from a large corpus. We convert numerical
and encoded attribute values into strings of digits
or alphabets. For Chinese attribute values, we do
word-segmentation using pkuseg (Luo et al., 2019).
Then, we mark the beginning and the end of an
attribute value with two special tokens, namely
hBEGi and hENDi. Finally, we pad each attribute
value with hPADi so that they are represented in
the same length l. The representation after padding
is illustrated as below:

(hBEGi, w1, w2, · · · hENDi, hPADi, · · · , hPADi)| {z }
lenght = l

Let W be the set of words, each word w 2 W
is mapped into a vector, and each attribute value is
mapped into a matrix. Formally, EMB : WN !

RN⇥de maps N words into an N ⇥ de matrix by
executing a look-up-table operation. N is the dic-
tionary size. In particular, we have EMB(e)[Ai] 2
Rl⇥de , in which de is the dimension of word em-
bedding vectors. It is worth noting that hPADi
is embedded to zero vector to ensure that it does
not interfere with other non-padding words in the
following step.

Word Information Aggregation (AGG). Sum-
ming up the l word embeddings as the embedding
of an attribute value will neglect the importance
weight among the l words. We leverage a more
flexible framework, which aggregates word infor-
mation by weighted pooling. The weighting co-
efficients ↵i for different words are extracted by
multiplying its embedding vector with a learnable,
and attribute-specific vector ai 2 Rde⇥1. Subscript
i implies that ↵i and ai are associated with the
ith attribute Ai. The weighting coefficients are
normalized by Softmax function among words. Fi-
nally, we enable a non-linear transformation (e.g.,
ReLU) during information aggregation with param-
eters Wai 2 Rde⇥da . Formally, AGG maps each
attribute value of entity record e into a da dimen-
sional vector AGG(EMB(e)[Ai]) 2 Rda as below:

AGG(EMB(e)[Ai]) = ReLU (↵i EMB(e)[Ai]Wai)

↵i = Softmax(EMB(e)[Ai] ai)
> 2 R1⇥l
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2.1.   Heterogeneous Information Fusion

EMB – Word Embedding

• Segmentation and padding for each attribute value.

• Static embedding as look up table operation.

• Attribute value 𝑒 𝒜! ⟹ 𝑙 embedding vectors.

• EMB 𝑒 𝒜! ∈ ℝ"×$$
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AGG – Word Information Aggregation

• Attribute value 𝑒 𝒜! ⟹ 𝑙 embedding vectors ⟹ 1 embedding vector

2.1.   Heterogeneous Information Fusion
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AGG – Word Information Aggregation

• Attribute value 𝑒 𝒜! ⟹ 𝑙 embedding vectors ⟹ 1 embedding vector

• Aggregation weight is learned from attention

• Attention vector for the 𝑖%& attributes: 𝛼!

2.1.   Heterogeneous Information Fusion
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AGG – Word Information Aggregation

• Attribute value 𝑒 𝒜! ⟹ 𝑙 embedding vectors ⟹ 1 embedding vector

• Aggregation weight is learned from attention

• Attention vector for the 𝑖%& attributes: 𝛼!

2.1.   Heterogeneous Information Fusion
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AGG – Word Information Aggregation

• Attribute value 𝑒 𝒜! ⟹ 𝑙 embedding vectors ⟹ 1 embedding vector

• Aggregation weight is learned from attention

• Attention vector for the 𝑖%& attributes: 𝛼!

• Aggregation as weighted sum: AGG EMB 𝑒 𝒜! ∈ ℝ$%

2.1.   Heterogeneous Information Fusion
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PROP – Attribute Information Propagation

• Recover noisy attribute value by information propagation

• Learn propagation weight with Scaled-Dot-Product

2.1.   Heterogeneous Information Fusion
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PROP – Attribute Information Propagation

• Recover noisy attribute value by information propagation

• Learn propagation weight with Scaled-Dot-Product

2.1.   Heterogeneous Information Fusion
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PROP – Attribute Information Propagation

• Recover noisy attribute value by information propagation

• Learn propagation weight with Scaled-Dot-Product

• Keep identity information with Residual connection

2.1.   Heterogeneous Information Fusion
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CFC – Comparison Feature Computation

• Embedded feature comparison

• Cosine Similarity

• 𝐿' Distance

• Pearson Coefficient

2.2.   Key Attribute Tree
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CFC – Comparison Feature Computation

• Embedded feature comparison

• Cosine Similarity

• 𝐿' Distance

• Pearson Coefficient

2.2.   Key Attribute Tree
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CFC – Comparison Feature Computation

• Embedded feature comparison

• Original attribute value comparison

2.2.   Key Attribute Tree
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KAT Induction

• Key Attribute heuristic

• Entity records can be determined to be a match with few key 

attributes

• Some attributes are more important than others for EM

• Key Attribute Tree

• Inducted with decision tree algorithm

• Input: CFC features

• Output: True for matching and False for non-matching

2.2.   Key Attribute Tree
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Mask Attribute Values

• Auxiliary MLP layers

• Training objective: Cross entropy

• Auxiliary MLP output

• Weighted Bag of Word vector

2.3.   Self-Supervised Training
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Figure 1: Entity Matching: determine the matching entries from two datasets.

Figure 2: An EM system architecture with D���� as the matcher.
In addition to the training data, the user of D���� can specify (1) a
method for injecting domain knowledge (DK), (2) a summarization
module for keeping the essential information, and (3) a data aug-
mentation (DA) operator to strengthen the training set.

as a sequence-pair classi�cation problem to leverage such models
with a simple architecture. To our knowledge,D���� is one of the
�rst EM solutions that leverage pre-trained Transformer-based
LMs1 to provide deeper language understanding for EM.

• We also developed three optimization techniques to further im-
prove D����’s matching capability through injecting domain
knowledge, summarizing long strings, and augmenting train-
ing data with (di�cult) examples. The �rst two techniques help
D���� focus on the right information for making matching deci-
sions. The last technique, data augmentation, is adapted from [31]
for EM to help D���� learn “harder” to understand the data in-
variance properties that may exist but are beyond the provided
labeled examples and also, reduce the amount of training data
required.

• We evaluated the e�ectiveness of D���� on three benchmark
datasets: the Entity Resolution benchmark [26], the Magellan
dataset [25], and the WDC product matching dataset [39] of vari-
ous sizes and domains. Our experimental results show thatD����
consistently outperforms the previous SOTA EM solutions in all
datasets and by up to 31% in F1 scores. Furthermore, D���� con-
sistently performs better on dirty data and is more label e�cient:
it achieves the same or higher previous SOTA accuracy using
less than half the labeled data.

• We applied D���� to a real-world large-scale matching task on
two company datasets, containing 789K and 412K entries re-
spectively. To deploy an end-to-to EM pipeline e�ciently, we
developed an advanced blocking technique to help reduce the
number of pairs to consider for D����. D���� obtains high ac-
curacy, 96.5% F1 on a holdout dataset. The blocking phase also
helped speed up the end-to-end EM deployment signi�cantly, by
up to 3.8 times, compared to naive blocking techniques.

• Finally, we open-source D���� at https://github.com/megagonlabs/
ditto.

1There is a concurrent work [6] which applies a similar idea.

Outline Section 2 overviews D���� and pre-trained LMs. Section
3 describes how we optimize D���� with domain knowledge, sum-
marization, and data augmentation. Our experimental results are
described in Section 4 and the case study is presented in Section 5.
We discuss related work in Section 6 and conclude in Section 7.

2 BACKGROUND AND ARCHITECTURE
We present the main concepts behind EM and provide some back-
ground on pre-trained LMs before we describe how we �ne-tune
the LMs on EM datasets to train EM models. We also present a
simple method for reducing EM to a sequence-pair classi�cation
problem so that pre-trained LMs can be used for solving the EM
problem.

Notations D����’s EM pipeline takes as input two collections D
and D 0 of data entries (e.g., rows of relational tables, XML docu-
ments, JSON �les, text paragraphs) and outputs a setM ✓ D⇥D 0 of
pairs where each pair (e, e 0) 2 M is thought to represent the same
real-world entity (e.g., person, company, laptop, etc.). A data entry
e is a set of key-value pairs e = {(a�ri , vali )}1ik where a�ri is
the attribute name and vali is the attribute’s value represented as
text. Note that our de�nition of data entries is general enough to
capture both structured and semi-structured data such as JSON
�les.

As described earlier, an end-to-end EM system consists of a
blocker and a matcher. The goal of the blocking phase is to quickly
identify a small subset of D ⇥ D 0 of candidate pairs of high recall
(i.e., a high proportion of actual matching pairs are that subset).
The goal of a matcher (i.e., D����) is to accurately predict, given a
pair of entries, whether they refer to the same real-world entity.

2.1 Pre-trained language models
Unlike prior learning-based EM solutions that rely on word em-
beddings and customized RNN architectures to train the matching
model (See Section 6 for a detailed summary), D���� trains the
matching models by �ne-tuning pre-trained LMs in a simpler ar-
chitecture.

Pre-trained LMs such as BERT [13] and GPT-2 [41] have demon-
strated good performance on a wide range of NLP tasks. They
are typically deep neural networks with multiple Transformer lay-
ers [51], typically 12 or 24 layers, pre-trained on large text corpora
such as Wikipedia articles in an unsupervised manner. During pre-
training, the model is self-trained to perform auxiliary tasks such
as missing token and next-sentence prediction. Studies [9, 50] have
shown that the shallow layers capture lexical meaning while the
deeper layers capture syntactic and semantic meanings of the input
sequence after pre-training.

A speci�c strength of pre-trained LMs is that it learns the seman-
tics of words better than conventional word embedding techniques
such as word2vec, GloVe, or FastText. This is largely because the
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Figure 2: An EM system architecture with D���� as the matcher.
In addition to the training data, the user of D���� can specify (1) a
method for injecting domain knowledge (DK), (2) a summarization
module for keeping the essential information, and (3) a data aug-
mentation (DA) operator to strengthen the training set.

as a sequence-pair classi�cation problem to leverage such models
with a simple architecture. To our knowledge,D���� is one of the
�rst EM solutions that leverage pre-trained Transformer-based
LMs1 to provide deeper language understanding for EM.

• We also developed three optimization techniques to further im-
prove D����’s matching capability through injecting domain
knowledge, summarizing long strings, and augmenting train-
ing data with (di�cult) examples. The �rst two techniques help
D���� focus on the right information for making matching deci-
sions. The last technique, data augmentation, is adapted from [31]
for EM to help D���� learn “harder” to understand the data in-
variance properties that may exist but are beyond the provided
labeled examples and also, reduce the amount of training data
required.

• We evaluated the e�ectiveness of D���� on three benchmark
datasets: the Entity Resolution benchmark [26], the Magellan
dataset [25], and the WDC product matching dataset [39] of vari-
ous sizes and domains. Our experimental results show thatD����
consistently outperforms the previous SOTA EM solutions in all
datasets and by up to 31% in F1 scores. Furthermore, D���� con-
sistently performs better on dirty data and is more label e�cient:
it achieves the same or higher previous SOTA accuracy using
less than half the labeled data.

• We applied D���� to a real-world large-scale matching task on
two company datasets, containing 789K and 412K entries re-
spectively. To deploy an end-to-to EM pipeline e�ciently, we
developed an advanced blocking technique to help reduce the
number of pairs to consider for D����. D���� obtains high ac-
curacy, 96.5% F1 on a holdout dataset. The blocking phase also
helped speed up the end-to-end EM deployment signi�cantly, by
up to 3.8 times, compared to naive blocking techniques.

• Finally, we open-source D���� at https://github.com/megagonlabs/
ditto.

1There is a concurrent work [6] which applies a similar idea.

Outline Section 2 overviews D���� and pre-trained LMs. Section
3 describes how we optimize D���� with domain knowledge, sum-
marization, and data augmentation. Our experimental results are
described in Section 4 and the case study is presented in Section 5.
We discuss related work in Section 6 and conclude in Section 7.

2 BACKGROUND AND ARCHITECTURE
We present the main concepts behind EM and provide some back-
ground on pre-trained LMs before we describe how we �ne-tune
the LMs on EM datasets to train EM models. We also present a
simple method for reducing EM to a sequence-pair classi�cation
problem so that pre-trained LMs can be used for solving the EM
problem.

Notations D����’s EM pipeline takes as input two collections D
and D 0 of data entries (e.g., rows of relational tables, XML docu-
ments, JSON �les, text paragraphs) and outputs a setM ✓ D⇥D 0 of
pairs where each pair (e, e 0) 2 M is thought to represent the same
real-world entity (e.g., person, company, laptop, etc.). A data entry
e is a set of key-value pairs e = {(a�ri , vali )}1ik where a�ri is
the attribute name and vali is the attribute’s value represented as
text. Note that our de�nition of data entries is general enough to
capture both structured and semi-structured data such as JSON
�les.

As described earlier, an end-to-end EM system consists of a
blocker and a matcher. The goal of the blocking phase is to quickly
identify a small subset of D ⇥ D 0 of candidate pairs of high recall
(i.e., a high proportion of actual matching pairs are that subset).
The goal of a matcher (i.e., D����) is to accurately predict, given a
pair of entries, whether they refer to the same real-world entity.

2.1 Pre-trained language models
Unlike prior learning-based EM solutions that rely on word em-
beddings and customized RNN architectures to train the matching
model (See Section 6 for a detailed summary), D���� trains the
matching models by �ne-tuning pre-trained LMs in a simpler ar-
chitecture.

Pre-trained LMs such as BERT [13] and GPT-2 [41] have demon-
strated good performance on a wide range of NLP tasks. They
are typically deep neural networks with multiple Transformer lay-
ers [51], typically 12 or 24 layers, pre-trained on large text corpora
such as Wikipedia articles in an unsupervised manner. During pre-
training, the model is self-trained to perform auxiliary tasks such
as missing token and next-sentence prediction. Studies [9, 50] have
shown that the shallow layers capture lexical meaning while the
deeper layers capture syntactic and semantic meanings of the input
sequence after pre-training.

A speci�c strength of pre-trained LMs is that it learns the seman-
tics of words better than conventional word embedding techniques
such as word2vec, GloVe, or FastText. This is largely because the
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Mask Attribute Values

• Auxiliary MLP layers

• Training objective: Cross entropy

• Auxiliary MLP output

• Weighted Bag of Word vector

2.3.   Self-Supervised Training
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Figure 2: An EM system architecture with D���� as the matcher.
In addition to the training data, the user of D���� can specify (1) a
method for injecting domain knowledge (DK), (2) a summarization
module for keeping the essential information, and (3) a data aug-
mentation (DA) operator to strengthen the training set.

as a sequence-pair classi�cation problem to leverage such models
with a simple architecture. To our knowledge,D���� is one of the
�rst EM solutions that leverage pre-trained Transformer-based
LMs1 to provide deeper language understanding for EM.

• We also developed three optimization techniques to further im-
prove D����’s matching capability through injecting domain
knowledge, summarizing long strings, and augmenting train-
ing data with (di�cult) examples. The �rst two techniques help
D���� focus on the right information for making matching deci-
sions. The last technique, data augmentation, is adapted from [31]
for EM to help D���� learn “harder” to understand the data in-
variance properties that may exist but are beyond the provided
labeled examples and also, reduce the amount of training data
required.

• We evaluated the e�ectiveness of D���� on three benchmark
datasets: the Entity Resolution benchmark [26], the Magellan
dataset [25], and the WDC product matching dataset [39] of vari-
ous sizes and domains. Our experimental results show thatD����
consistently outperforms the previous SOTA EM solutions in all
datasets and by up to 31% in F1 scores. Furthermore, D���� con-
sistently performs better on dirty data and is more label e�cient:
it achieves the same or higher previous SOTA accuracy using
less than half the labeled data.

• We applied D���� to a real-world large-scale matching task on
two company datasets, containing 789K and 412K entries re-
spectively. To deploy an end-to-to EM pipeline e�ciently, we
developed an advanced blocking technique to help reduce the
number of pairs to consider for D����. D���� obtains high ac-
curacy, 96.5% F1 on a holdout dataset. The blocking phase also
helped speed up the end-to-end EM deployment signi�cantly, by
up to 3.8 times, compared to naive blocking techniques.

• Finally, we open-source D���� at https://github.com/megagonlabs/
ditto.

1There is a concurrent work [6] which applies a similar idea.

Outline Section 2 overviews D���� and pre-trained LMs. Section
3 describes how we optimize D���� with domain knowledge, sum-
marization, and data augmentation. Our experimental results are
described in Section 4 and the case study is presented in Section 5.
We discuss related work in Section 6 and conclude in Section 7.

2 BACKGROUND AND ARCHITECTURE
We present the main concepts behind EM and provide some back-
ground on pre-trained LMs before we describe how we �ne-tune
the LMs on EM datasets to train EM models. We also present a
simple method for reducing EM to a sequence-pair classi�cation
problem so that pre-trained LMs can be used for solving the EM
problem.

Notations D����’s EM pipeline takes as input two collections D
and D 0 of data entries (e.g., rows of relational tables, XML docu-
ments, JSON �les, text paragraphs) and outputs a setM ✓ D⇥D 0 of
pairs where each pair (e, e 0) 2 M is thought to represent the same
real-world entity (e.g., person, company, laptop, etc.). A data entry
e is a set of key-value pairs e = {(a�ri , vali )}1ik where a�ri is
the attribute name and vali is the attribute’s value represented as
text. Note that our de�nition of data entries is general enough to
capture both structured and semi-structured data such as JSON
�les.

As described earlier, an end-to-end EM system consists of a
blocker and a matcher. The goal of the blocking phase is to quickly
identify a small subset of D ⇥ D 0 of candidate pairs of high recall
(i.e., a high proportion of actual matching pairs are that subset).
The goal of a matcher (i.e., D����) is to accurately predict, given a
pair of entries, whether they refer to the same real-world entity.

2.1 Pre-trained language models
Unlike prior learning-based EM solutions that rely on word em-
beddings and customized RNN architectures to train the matching
model (See Section 6 for a detailed summary), D���� trains the
matching models by �ne-tuning pre-trained LMs in a simpler ar-
chitecture.

Pre-trained LMs such as BERT [13] and GPT-2 [41] have demon-
strated good performance on a wide range of NLP tasks. They
are typically deep neural networks with multiple Transformer lay-
ers [51], typically 12 or 24 layers, pre-trained on large text corpora
such as Wikipedia articles in an unsupervised manner. During pre-
training, the model is self-trained to perform auxiliary tasks such
as missing token and next-sentence prediction. Studies [9, 50] have
shown that the shallow layers capture lexical meaning while the
deeper layers capture syntactic and semantic meanings of the input
sequence after pre-training.

A speci�c strength of pre-trained LMs is that it learns the seman-
tics of words better than conventional word embedding techniques
such as word2vec, GloVe, or FastText. This is largely because the
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In addition to the training data, the user of D���� can specify (1) a
method for injecting domain knowledge (DK), (2) a summarization
module for keeping the essential information, and (3) a data aug-
mentation (DA) operator to strengthen the training set.

as a sequence-pair classi�cation problem to leverage such models
with a simple architecture. To our knowledge,D���� is one of the
�rst EM solutions that leverage pre-trained Transformer-based
LMs1 to provide deeper language understanding for EM.

• We also developed three optimization techniques to further im-
prove D����’s matching capability through injecting domain
knowledge, summarizing long strings, and augmenting train-
ing data with (di�cult) examples. The �rst two techniques help
D���� focus on the right information for making matching deci-
sions. The last technique, data augmentation, is adapted from [31]
for EM to help D���� learn “harder” to understand the data in-
variance properties that may exist but are beyond the provided
labeled examples and also, reduce the amount of training data
required.

• We evaluated the e�ectiveness of D���� on three benchmark
datasets: the Entity Resolution benchmark [26], the Magellan
dataset [25], and the WDC product matching dataset [39] of vari-
ous sizes and domains. Our experimental results show thatD����
consistently outperforms the previous SOTA EM solutions in all
datasets and by up to 31% in F1 scores. Furthermore, D���� con-
sistently performs better on dirty data and is more label e�cient:
it achieves the same or higher previous SOTA accuracy using
less than half the labeled data.

• We applied D���� to a real-world large-scale matching task on
two company datasets, containing 789K and 412K entries re-
spectively. To deploy an end-to-to EM pipeline e�ciently, we
developed an advanced blocking technique to help reduce the
number of pairs to consider for D����. D���� obtains high ac-
curacy, 96.5% F1 on a holdout dataset. The blocking phase also
helped speed up the end-to-end EM deployment signi�cantly, by
up to 3.8 times, compared to naive blocking techniques.

• Finally, we open-source D���� at https://github.com/megagonlabs/
ditto.

1There is a concurrent work [6] which applies a similar idea.

Outline Section 2 overviews D���� and pre-trained LMs. Section
3 describes how we optimize D���� with domain knowledge, sum-
marization, and data augmentation. Our experimental results are
described in Section 4 and the case study is presented in Section 5.
We discuss related work in Section 6 and conclude in Section 7.

2 BACKGROUND AND ARCHITECTURE
We present the main concepts behind EM and provide some back-
ground on pre-trained LMs before we describe how we �ne-tune
the LMs on EM datasets to train EM models. We also present a
simple method for reducing EM to a sequence-pair classi�cation
problem so that pre-trained LMs can be used for solving the EM
problem.

Notations D����’s EM pipeline takes as input two collections D
and D 0 of data entries (e.g., rows of relational tables, XML docu-
ments, JSON �les, text paragraphs) and outputs a setM ✓ D⇥D 0 of
pairs where each pair (e, e 0) 2 M is thought to represent the same
real-world entity (e.g., person, company, laptop, etc.). A data entry
e is a set of key-value pairs e = {(a�ri , vali )}1ik where a�ri is
the attribute name and vali is the attribute’s value represented as
text. Note that our de�nition of data entries is general enough to
capture both structured and semi-structured data such as JSON
�les.

As described earlier, an end-to-end EM system consists of a
blocker and a matcher. The goal of the blocking phase is to quickly
identify a small subset of D ⇥ D 0 of candidate pairs of high recall
(i.e., a high proportion of actual matching pairs are that subset).
The goal of a matcher (i.e., D����) is to accurately predict, given a
pair of entries, whether they refer to the same real-world entity.

2.1 Pre-trained language models
Unlike prior learning-based EM solutions that rely on word em-
beddings and customized RNN architectures to train the matching
model (See Section 6 for a detailed summary), D���� trains the
matching models by �ne-tuning pre-trained LMs in a simpler ar-
chitecture.

Pre-trained LMs such as BERT [13] and GPT-2 [41] have demon-
strated good performance on a wide range of NLP tasks. They
are typically deep neural networks with multiple Transformer lay-
ers [51], typically 12 or 24 layers, pre-trained on large text corpora
such as Wikipedia articles in an unsupervised manner. During pre-
training, the model is self-trained to perform auxiliary tasks such
as missing token and next-sentence prediction. Studies [9, 50] have
shown that the shallow layers capture lexical meaning while the
deeper layers capture syntactic and semantic meanings of the input
sequence after pre-training.

A speci�c strength of pre-trained LMs is that it learns the seman-
tics of words better than conventional word embedding techniques
such as word2vec, GloVe, or FastText. This is largely because the
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Datasets

• Structured: Attribute values are complete

• Dirty: Attribute values are noisy with missing and misplacement

• Real: Industrial dataset from Taobao
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Sensitivity Test

• Control variables:

• Training set size

• Missing rate
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4.   Conclusion & Future Work

• Conclusion

• The decoupled framework provides a paradigm for utilizing 

unlabeled data and providing interpretable EM process.

• Future Work

• Leveraging extra entity records

• Incorporating pre-trained language models

• Incorporating HIF with other EM models
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